
 

 

Abstract-An Independent Component Analysis (ICA) based 
segmentation technique is presented allowing the quantitative 
assessment of cerebral blood volume (CBV), cerebral blood flow 
(CBF) and mean transit time (MTT) from dynamic 
susceptibility contrast magnetic resonance (MR) images of the 
brain. Tissue types such as gray matter (GM), white matter 
(WM), and pathology appear as different ICA components as a 
result of their distinct temporal response to the first passage of 
contrast agent through the brain. The average CBV, CBF, and 
MTT values calculated for each component / tissue type could  
help evaluate the evolution of pathology and provide the 
opportunity for intersubject comparisons. 
Keywords � Independent Component Analysis, Segmentation, 
Magnetic Resonance Imaging Perfusion, Dynamic Susceptibility 
Contrast Imaging,  

 
I. INTRODUCTION 

 
The segmentation of perfusion images is essential for 

tissue-specific quantitative assessment of cerebral blood 
volume (CBV), cerebral blood flow (CBF), and mean transit 
time (MTT) values. Average CBV, CBF, MTT values 
expressed per tissue type can help assess the severity of 
pathology and the progression of disease. Other researchers 
have applied a similarity-based segmentation method to 
perfusion data using a reference model curve [1]. The 
determination of the reference curve however requires that 
the user identify the voxels of interest making the method 
somewhat subjective. Independent Component Analysis 
(ICA) [2] is a model-free method that can group together 
temporal responses based on their distinct spatial signatures 
without requiring a reference model. ICA, for example, has  
been used in functional magnetic resonance imaging (fMRI) 
analysis for the determination of activation patterns [3, 4]. 
ICA has also been applied to perfusion data for the 
identification of large arteries in order to eliminate their 
confounding effects [5]. In this work, ICA is applied to 
dynamic susceptibility contrast-based perfusion data to 
segment the brain, based on temporally distinct patterns of 
perfusion responses.  
 

II. METHODOLOGY 

Perfusion 
Time-series data were acquired during pre and post-

injection of an intravenous dose of the contrast agent Gd-
DTPA. The images were obtained on a 1.5 Tesla MRI system 
retrofitted for echo-planar imaging (TR = 2 sec, TE = 60 
msec). The ICA analysis was applied to both susceptibility 
and concentration time curves. The signal intensity time 
course of dynamic susceptibility curves is characterized by an 
initial post-injection loss of signal intensity during the 
passage of contrast agent and a subsequent recovery (Fig. 1). 
For the calculation of perfusion parameters, the Perfusion 
module of the MEDx Analysis Package (Sensor Systems, 
Sterling VA) was used. Initially the susceptibility curves 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Representative dynamic susceptibility temporal plots 
            from  WM and GM tissue types 

 
were converted into concentration curves via [6],  

 
              C(t) = -k/TE*ln[S(t)/S0]        (1) 
 

where C(t) is the Gd-DTPA concentration as a function of 
time; k is a proportionality constant; TE is the echo time; and 
S(t) and S0 refer to the recorded signal over time and the 
average baseline signal intensity prior to the injection of 
contrast. The images were masked to eliminate non-brain 
voxels. The concentration-time curves at each voxel were 
subsequently fitted to gamma variate curves [7]. The fitted 
gamma variates were evaluated for early arrival time, large 
area, narrow peak width (low variance in time), and steep 
slope uptake (high positive skew) for an automated 
determination of a representative arterial input function (AIF) 
[9]. The representative AIF was then deconvolved from the 
observed concentration curves Cobs(t) at each voxel using 
SVD to determine the residue function R(t). The maximum 
amplitude of the residue function constituted the CBF [10]. 
 
                     Cobs(t) = CBF (R(t)  *  AIF(t))               (2) 
 
For the determination of absolute CBV, a Wiener filter-like 
approach was adopted whereby the area under the 
concentration curve was normalized both by the area under 
the AIF and by the density of the brain tissue ρ, and 
multiplied by a correction factor Kh that took into account the 
difference in hematocrit between large and small vessels 
[11]. The ratio of CBV to CBF constituted the MTT. 
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Independent Component Analysis 

 The ICA analysis was conducted assuming that the 
perfusion profiles within each tissue type were similar but 
that the profiles varied between tissue types. Thus it was 
assumed that the individual voxel time courses could be 
represented as a linear mixture of the susceptibility responses 
or the concentration time curves and other spatially localized 
and temporally consistent effects. Each voxel time course 
was expressed using a latent variables model as 

     xi(t)= ∑
k

ak(t)ski + εi(t),    (4)    

where xi, the perfusion curve associated with voxel i, is being 
expressed as a linear combination of k unknown individual 
time courses ak(t) (weighted by the unknown coefficients ski) 
plus voxel-specific spatially uncorrelated Gaussian noise 
εi(t). The coefficients ski form a set of spatial maps sk which 
are assumed to be statistically independent with non-
Gaussian distribution. The individual voxel time courses (i.e. 
susceptibility or concentration curves) were de-meaned and 
optionally scaled to unit variance. The perfusion data set was 
then rearranged to form a data matrix X containing the time 
courses of the individual voxels as columns. When all voxels 
are considered simultaneously, equation (4) becomes 

       X  = A S + ε.          (5) 

Since ε is assumed to be jointly Gaussian, to account for the 
possible existence of non-Gaussian artifactual sources in the 
data, the number of spatial components was allowed to be 
larger than the number of different tissue types of interest. 
The determination of the rank r of A then became a problem 
of model order selection which was solved employing 
Bayesian model selection by viewing the latent variables 
model of (4) as a probabilistic principal component analysis 
(PCA) model [13]. This involved calculating the eigenvalue-
decomposition of the sample covariance matrix CX of the 
observations 

      CX = AAT + Cx         (6) 
in order to obtain the posterior probability of the data for each 
possible dimensionality to form maximum a posteriori 
(MAP) estimates of the 'true' rank r, i.e. the dimensionality of 
the principal signal sub-space of the data assuming Gaussian 
noise The data was then centered, whitened, and projected 
into the subspace spanned by the r largest eigenvectors of the 
covariance matrix CX. The new matrix was decomposed into 
the product of a mixing matrix A and the matrix of 
underlying source components S using a fixed-point 
technique that maximizes approximations to negentropy as a 
measure of non-Gaussianity [12]. This method was 
implemented as part of FSL (FMRIB's Software Library, 
www.fmrib.ox.ac.uk/fsl) [4] which is also incorporated into 
the MEDx software (Sensor Systems, Sterling VA).  
 

III. RESULTS 
 

The ICA analysis successfully identified GM, WM, CSF, 
and pathology as different ICA components. The GM/WM - 
segmentation of the brain depicted in Fig. 2b was obtained 

 

  
Fig. 2a 

 

 
Fig 2b 

 

 
Fig 2c 

 
Fig. 2  (a) The original susceptibility data (b) the ICA 

component depicting the GM/WM contrast and (c) 
the corresponding time course. 
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      Fig. 3a                      Fig. 3b                  Fig. 3c 

 
            Fig. 3d 

 
        Fig. 3e 
 

Fig. 3  (a) The original stroke data and the associated (b) 
CBV and (c) CBF maps obtained as a result of the 
perfusion analysis.  (d) the ICA component depicting 
the lesion and the corresponding time course (e) the 
ICA component depicting the GM/WM and the 
corresponding time course 

 
through a three component ICA analysis of variance 
normalized concentration data. Note that while there is some 
gray/white matter contrast in parts of the original images 
(Fig. 2a), the contrast is not consistent spatially, and is clearly 
inferior to the contrast shown in the relevant spatial ICA map. 
The temporal curve associated with this component (Fig. 2c) 
resembles closely that of a susceptibility curve, but is 
relatively noise-free enabling a clean segmentation. Fig. 3 
depicts the case of a stroke patient. Note that in the MR 
acquisition images, the region of the stroke is not readily 
visible (Fig. 3a). The lesion is much better delineated in the 
CBV and CBF maps (Figs. 3b and 3c, respectively) due to the  
much lower CBV, CBF values in the region of the stroke. The 
time course associated with the ICA component depicting the 
lesion (Fig. 3d) has a much flatter response than the time 
course associated with the component delineating the 
GM/WM. The quality of the GM/WM segmentation was 
higher when the ICA analysis was conducted on 
concentration data as opposed to susceptibility data. In all 
cases variance normalization increased the contrast and hence 
the quality of the segmentation maps. The CSF, on the other 
hand, cannot be delineated using ICA due to the fact that 
there is no consistent temporal response within that class. It 
can however, be visualized in one of the ICA components 
when the analysis is performed on data where the mean 
intensity image of the raw data is retained. The component 
map after ICA analysis then reflects the mean image 
intensities and using it for CSF segmentation is comparable 

to using the raw image intensities. Applying the binarized 
ICA segmentation results to the perfusion maps, GM to WM 
ratios of ~2:1 were obtained both for average CBV and CBF 
values in the elderly subjects studied as well as in the stroke 
study.  

 
 

IV. DISCUSSION 
 

In the segmentation of perfusion maps, it might be argued 
that the CBV, CBF maps themselves provide an intrinsic 
segmentation and that thresholding these maps should obviate 
the need for additional segmentation. Histograms of the CBV 
and CBF distributions however revealed that the histograms 
were comprised of a continuum of values and the 
distributions were unimodal making the determination of a 
proper threshold totally arbitrary. The ability of ICA to 
accentuate different tissue types in different components 
significantly enhanced the quality of the segmentation. 

The ICA segmentation results were altered depending on 
whether the analysis was conducted on susceptibility or on 
concentration data. Converting the susceptibility data to 
concentration (Eq. 1) preconditions the data in a way that 
improves the within-tissue temporal response homogeneity, 
making it possible for more information to be gleaned by the 
same number of ICA components, thus improving GM/WM 
segmentation.  

The optimal number of ICA components was determined 
prior to applying ICA, through Bayesian model selection. 
Performing the ICA analysis with more than the optimal 
number of components can split the same information into 
several components leading to sub-optimal segmentation 
contrast. It should be noted, however, that in the context of 
image segmentation such splittings into different component 
maps may provide useful information as they may reflect 
valid spatial variations in the temporal responses. In practice, 
we found our method to be robust, i.e. the splitting of 
interesting components did not occur until substantially more 
components were requested than the number suggested by the 
automatic model-selection procedure.  
 

 
V. CONCLUSION 

Applying ICA analysis to MR dynamic susceptibility 
contrast data highlights different tissue types in different ICA 
components providing good quality segmentation of the 
brain. The analysis method is fast, robust and the 
decomposition into different spatial maps and the 
corresponding time-courses is accomplished without user 
intervention and no knowledge of the expected temporal 
response profiles. 
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